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Abstract—The Trinity XC-40 system at Los Alamos National
Laboratory presents unprecedented challenges to our system
management capabilities, including increased scale, new and un-
familiar subsystems, and radical changes in the system software
stack. These challenges have motivated the development of a next-
generation monitoring system with new capabilities for collection
and analysis of system and facilities data.

This paper presents the design of our new monitoring system,
its implementation, and an analysis of impact on system and
application performance. This will include the aggregation of
diverse data feeds from the compute platform, such as system
logs, hardware metrics, power and energy usage, and High Speed
Network performance counters; as well as data from supporting
systems such as the parallel filesystem, network infrastructure,
and facilities. We will also present tools and analyses used to
better understand system and application behavior, as well as
ongoing development in our monitoring processes based on early
experiences with the machine.

I. BACKGROUND

A. Review of the Trinity system

Trinity is the new Cray XC-40 system currently being
deployed at Los Alamos National Laboratory (LANL) for the
Alliance for Computing at Extreme Scale (ACES), a collabora-
tion between LANL and Sandia National Laboratories (SNL).
The first phase of the Trinity deployment, completed in 2015,
consists of 9,324 compute nodes with dual-socket Intel Xeon
CPU E5-2698 v3 processors, as well as 594 service nodes. The
second phase, to be completed in 2016, will include over 9,000
compute nodes with the new generation of Intel Xeon Phi
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(“Knights Landing”) processors and a few hundred additional
service nodes.

In addition to a new processor architecture, Trinity will in-
clude several new subsystems which are new or unfamiliar for
ACES systems. These include several hundred service nodes
with solid-state disks (SSDs), running the Cray DataWarp
software, which will act as a fast “burst buffer” storage tier;
two large Cray Sonexion Lustre filesystems, each totaling
35 PB of usable space; a new water cooling system; a new
power management subsystem; and the Aries [1] network.
The Trinity deployment also includes the deployment of the
new Cray system software stack (CLE 6.0 / SMW 8.0), which
includes a tight integration with the Ansible [2] configuration
management tool and is architected in a very different manner
from either our previous Cray deployments (CLE 4.x and 5.x),
or our commodity cluster systems.

B. Motivations for monitoring

Given the extensive changes introduced by Trinity relative
to past deployments, system monitoring has become a key tool
in improving our understanding of how this new system works.
Effective monitoring will give us real insights into the actual,
rather than expected, behavior and performance. The design
of our monitoring system is dictated by several important
workflows, each with its own time scale.

First, the monitoring system should generate timely alerts
for significant system events. These events are related to the
availability of the whole system, a set of specific system
components or services, or any security related events. This
also includes environmental conditions for the system, such as
temperature, power, leak detection, or other facility conditions.
Alerts for these events should be generated within seconds or
minutes of the event occurring, so that system operators or
administrators can take action to correct these issues.

Second, the monitoring system should be able to produce
performance data for understanding the behavior of user ap-
plications. At the system level, this should take the form of
metrics on the utilization and availability of system resources,
e.g. free memory, CPU utilization, network counters, etc.
This data could be used by users in the hours, days, or
weeks following an application run to understand their job’s
performance and plan their next run, as well as administrators
investigating systemic performance issues.



Third, the monitoring system will be used for longer-
term analysis of system metrics in order to understand system
behavior over longer time scales. This may include such anal-
yses as studies of hardware failure analysis, periodic checks
for degradation in performance or reliability, and analysis of
typical user workloads in order to understand how the system
is used. These types of analysis will be conducted over the time
scale of months or years, including studies conducted past the
lifetime of Trinity itself, and may be used to help plan future
hardware procurements.

C. Insufficiency of existing monitoring stack

Most HPC systems currently deployed at LANL share
a common monitoring stack based primarily around log
analysis.[3], [4] (See Figure 8.) Each system has some type
of “cluster master” server which collects syslog data from all
other nodes in the cluster. (In the case of our Cray systems,
the system management workstation (SMW) performs this
function.) Each cluster master may also run periodic scripts to
collect additional data from the system, such as temperature
data or InfiniBand metrics, and inject this data into the syslog
feed. The cluster master then forwards the collected logs
to a dedicated monitoring server (“mon box”) which runs
a heavily-customized instance of Zenoss[5], an open-source
monitoring system. Zenoss applies a series of “filters” to the
incoming data, watching for specific message types, and alerts
the operations staff to recognized issues using an email, page,
or dashboard visualization. In addition to the Zenoss feed, log
data is duplicated and fed into a shared Splunk[6] installation,
which can be used to interactively search historical data and
produce dashboard visualizations.

While this monitoring stack has proved useful for most
of our systems so far, it has a few weaknesses. First, it is
designed primarily for alerting on well-characterized issues
which produce easy-to-parse messages in our log stream.
While this is useful for handling most day-to-day issues, it
provides little or no visibility for problems which are not yet
well-understood or which cannot be easily caught using system
logs. Also, while a few “active” checks exist (such as a script
for monitoring the InfiniBand fabric), we mostly rely on the
cluster software to log the issues we expect to see. Due to the
number of new technologies and software versions deployed
with Trinity, we expect to add many new types of sanity checks
and monitor for many new conditions which may affect the
system’s reliability and performance.

Second, this stack provides little or no visibility into
application issues. For the most part, our users are expected to
perform whatever application-level logging or monitoring they
need in their own code or job scripts. In many cases, the only
data our administrators have with respect to any given job is a
basic list of metadata from the cluster scheduler: when the job
started, when it ended, which nodes were assigned, and the
paths to the input script, standard output and standard error
files. This limits the ability of HPC staff to help diagnose
many types of issues, such as the always-challenging “my job
is slow”, especially in the case where poor job performance
or behavior is not noticed until after the job is completed and
many other jobs may have run on the same hardware. Our
new monitoring stack for Trinity must provide better insight

into the actual behavior of the system with respect to any given
job to help us better assist our users.

Third, we do not expect our current monitoring system to
be able to scale to Trinity, either in terms of providing the
necessary data throughput or the flexibility to carry out many
different types of analysis. Our largest unclassified commodity
cluster resource, the 1,600-node Mustang, currently produces
approximately 140 MB of monitoring data per day. Even
accounting only for system and other logs, the first phase of the
Trinity deployment produces approximately 5.0 GB per day,
approximately 36 times more than Mustang. This increase will
be further exacerbated by the collection of new types of data
in order to address the issues mentioned above with respect to
understanding application performance and diagnose system
issues. We will also need the flexibility to be able to provide
our monitoring data feeds to many different applications, in
addition to Zenoss and Splunk, in order to carry new types of
analysis and better understand the system.

II. ARCHITECTURE AND IMPLEMENTATION

A. Overview

Our new monitoring system for Trinity provides a flexible,
scalable architecture for ingesting, distributing, and processing
many different types of data about the behavior of the system.
The monitoring system itself takes the form of a cluster
architecture, provisioned and managed by the same tools we
use to manage our commodity HPC clusters. Various types of
monitoring data are produced by each component of Trinity,
and are then transported to and collected by the monitoring
cluster depending on the source and type of the data. This data
is pre-processed and stored by the nodes of the cluster, and
then forwarded on to a message bus where it is distributed to
additional systems for further analysis, including our existing
Zenoss and Splunk infrastructures. The overall flow of data
through this system is shown in Figure 1.

In this section, we will describe in detail the generation of
monitoring data by Trinity and related systems; the implemen-
tation of our monitoring cluster for collecting and processing
this data; and its distribution by LANL’s shared monitoring
infrastructure for further analysis.

B. Collection of platform data

1) Log data: As on our other platforms, log data represents
an important data source for understanding Trinity’s behavior.
The logs are generated by a wide variety of components and
software services, including the compute nodes and service
nodes which make up “Trinity proper”, as well as “exter-
nal” components such as the parallel filesystem, user-facing
front-end servers, the workload management server, and the
InfiniBand subnet manager (SM). Each of these components
is connected, directly or indirectly, to a dedicated “monitoring
network” (Figure 2). Logs are collected and forwarded to the
nodes of the monitoring cluster using syslog, and combined
with the overall stream of monitoring data.

Several services, including the Torque[7] cluster resource
manager and the Moab[8] job scheduler, write many of their
logs directly to local log files on the nodes where they run,
instead of logging to a shared infrastructure. For these services,
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Fig. 1: Data flow paths from Trinity and associated subsystems to the monitoring infrastructure. LDMS aggregator nodes labeled
“A” are Cray service nodes or re-purposed compute nodes.

Fig. 2: A dedicated 10GbE “monitoring network” connects
the SMW, the monitoring cluster, the level three LDMS
aggregators (see Section II-B3), and external services which
log data related to Trinity (not shown).

we wrote rsyslog rules using the imfile plugin to ingest these
logs into the syslog stream with appropriate tags. Once in

syslog, these logs were forwarded on to the rest of the shared
monitoring infrastructure.

2) System environment data collections (SEDC): SEDC is a
Cray-specific service for collecting and reporting environmen-
tal data on Cray systems. [9] This data includes information
from sensors located on hardware components throughout the
system, such as blade and cabinet controllers, processors,
memory, fans, and components of the liquid cooling system;
and includes such metrics as fan speeds, temperatures, vot-
lages, and valve positions.

SEDC metrics are collected over the HSS network and
stored on the SMW by the sedc manager daemon. Unfor-
tunately, while sedc manager provides the option of storing
SEDC metrics to either flat files or the power management
database (PMDB), it does not provide a native mechanism for
forwarding these metrics to a downstream monitoring system.
While Cray recommends using the PMDB store for easy
queries of SEDC metrics from the SMW, our experiments with
this store gave us no easy way to extract metrics and inject



Fig. 3: SEDC metrics are collected over the HSS by the
sedc manager daemon on the SMW. This daemon writes each
metric on a per-device, per-time-step basis to a file named by
metric name under /tmp/SEDC_FILES. To ingest this data,
we have configured the rsyslog daemon to tail each of these
files using the imfile plugin. Each metric feed is then forwarded
to one of the collector nodes, with each metric being sent over
a separate TCP port so it can be identified at the far end.

them into the larger monitoring system using standard tools.

Instead, we chose to configure Trinity to use the
flat file store. With this store, each SEDC metric is
saved to a separate file, with files being periodically
rotated within its directory according to configuration
at /opt/cray/hss/default/etc/sedc_srv.ini. To
ingest these metrics into a stream we could forward, we wrote
a set of rules for the rsyslog daemon on the SMW to tail
these files using the imfile plugin. Once these metrics were in
the syslog stream, forwarding rules were written to send each
metric to one of the collector nodes in the monitoring cluster.
A separate TCP port was used to forward each metric, as the
individual metric lines contain no metadata, but instead just a
comma-separated list of numeric values. Corresponding syslog
rules were written on the collector side to accept these values
and label them appropriately for forwarding on to the rest of
the monitoring infrastructure. A schematic of this scheme is
shown in Figure 3.

3) In-band Data Collection and Transport: We are partic-
ularly interested in getting resource utilization data globally in
order to understand our workload demands, system state, and
where multiple applications contending for shared resources,
such as the HSN and file systems, can result in performance
issues.

There are a number of data sources which are not made
available via the standard Cray monitoring services or else
are not made available at the frequencies we would want
to resolve features of interest. Where such data is exposed
via node-level interfaces, we can collect it on the node and
transport it off the system to the monitoring cluster via the
HSN. For the collection and transport infrastructure, we use the
Lightweight Distributed Metric Service (LDMS) [10], which is
used on NCSA’s Blue Waters [11] Cray XE/XK for collecting
similar information, however there are some variations in the

collection that we describe here due to additional exposed data
on the XC. In this section, we first describe the data sources
and access, followed by the instantiation of the collection,
transport, and storage architecture on Trinity.

In-band Data Sources and Access Methods

The data sources we will collect in-band include the Aries
network counters [12], which are are made continuously avail-
able only via node level interfaces. These counters can be used
to provide insight on traffic and congestion. While they are
used internally for routing and congestion-response decisions,
higher-level information of this sort is only transported via
the HSS and made available to the logs in problem cases
(e.g., congestion and quiescence). There are significantly more
counters exposed for the Aries than for the Gemini [13], and
therefore, while the Aries network counter information can
be made available via the gpcdr interface [14] which exposes
such data on node via the /sys filesystem, as is done on Blue
Waters, we instead read the Aries network counter information
via Cray’s gpcd interface which has a lower performance
overhead for processing. The general methodology for reading
the gpcd counters applied to the Gemini be found in [15], with
detail specific to our collection of the Aries counters in [16].
This accounts for approximately 850 metrics.

Power data is newly exposed on the XC as opposed to
the XE/XK. However, while power data is made available
via SEDC, it is reported via SEDC at 1 Hz with higher
frequency data only available for limited times and node
count [17]. Power data is exposed at 10Hz at the node via
the /sys filesystem. In our Trinity Application Readiness
Testbeds (ART systems), we have seen [18] that the 10Hz data
can be collected and resolved across nodes to provide insight
into features of interest. Note that while we collect the data at
10Hz, we transport it at a lower frequency; this is described
further below. This accounts for 2 metrics.

In addition, we collect information on the shared parallel
file system, Lustre, such as opens, closes, reads and writes;
current free and active memory; and CPU utilization infor-
mation. This data is largely from /proc. This accounts for
approximately 85 metrics.

Architectural Instantiation

The LDMS infrastructure provides collection, transport,
and storage functionalities for HPC monitoring. LDMS is a
plugin based infrastructure. Plugins to and configuration of
the same core daemon, ldmsd, determine the functionality of a
particular instantiation of that daemon. Canonically, daemons
with sampling plugins collect data on the nodes into metric
sets; daemons that collect metric sets from other daemons are
called aggregators; daemons with storage plugins store, and
optionally process, their metric sets. Only the current metric
set is retained on a sampler or aggregator node at any time in
order to minimize the required memory.

The constitution of a metric set is up to the implementer.
It may be convenient to gather data from related sources by a
single plugin and thus into a single metric set. An additional
consideration is that a single timestamp is associated with a
metric set, which can simplify analysis. On Trinity, then, we
are dividing the in-band data amongst four sampling plugins:
one for the 10Hz power data; one for the Aries NIC metric



data; one for the Aries Router metric data; and a catch-all
for the remaining data. The 10Hz power metric set is roughly
a vector of multiple timestamped instances of the 10Hz data
which then aggregated at a lower frequency. Since all nodes
on a blade have access to the same Aries router data, the same
Aries Router metric sampler plugin is run on each node, but
with different configurations in order to reduce the amount of
duplicate data collected.

The aggregators use a pull model to fetch data from
the sampling daemons in order to minimize the impact and
complexity of the daemons running on the compute nodes. The
pull utilizes the Remote Distributed Memory Access (RDMA)
protocol in order to minimize the CPU involvement of the
compute nodes in the data transport. Arbitrary connection
topologies are supported. Different transport protocols can be
used at the different aggregators (e.g., RDMA vs socket).

Typically, then, samplers are run on compute nodes and
aggregators are run on nodes not acting as compute nodes
but connected by the HSN to the sampler nodes in order
to take advantage of RDMA over the HSN. Location of
storage daemons is guided by the constraints of the storage.
If the storage daemons are off-cluster they can aggregate from
aggregators over socket (as opposed to RDMA).

On Trinity, we have set a target of one second intervals for
collection and transport, with the exception of the power data
which is collected at 10Hz and aggregated at 1 Hz, in order to
obtain relatively fine-grained data about resource consumption
on each node. The constraints of the Trinity deployment and
possible limits on the scalability of aggregation have led us
to employ a three-level aggregation scheme for transporting
metrics off the system.

When initially investigating the LDMS fan-in ratios (sam-
pler hosts to aggregator ratio) on XE/XK systems we ran into a
limit of about 16,000:1, which Cray told told us was a known
bug/limitation of the particular kernel they were running and
that newer kernels had a patch for it. We have not yet re-
investigated this limit on the current Trinity software stack.
However, using this as a general guideline, since Trinity will
eventually comprise more than 19,000 compute nodes and
nearly 1,000 service nodes, we would then require a minimum
of two aggregators for the compute nodes, with at least four
desired for reliability and failover.

However, in order to transport collected metrics off the
system, we have to provide external network connectivity to
our aggregators from the storage daemons on the monitoring
cluster and the Trinity deployment only included two unal-
located service nodes which could be used to transport this
data. Thus, our aggregation scheme, as shown in Figure 1,
includes a level one tier of four re-purposed compute nodes
(indicated by A with the ldms daemons shown as AGG) which
pull from the ldmsd samplers (shown as LDMS running on the
hosts indicated by H) running on compute and other service
nodes via RDMA over the HSN, with failover between pairs of
aggregators; a level two tier consisting of the two previously-
unallocated service nodes (indicated by S, with both the Aries
and the external Ethernet connections) each of which can act
as a failover partner for the others, which pull from the level
one aggregators, also via RDMA over the HSN; and a level
three tier consisting of the the nodes of the monitoring cluster

(shown as LDMS on the green monitoring cluster nodes),
which pull from the level two aggregators over socket.

The third level aggregators also perform in transit pro-
cessing of some of the metrics in order to produce functional
forms that are more conducive to immediate analysis, such
as rates and ratios of various raw metrics. Both the raw and
the derived data are used for limited-term analysis on the
monitoring cluster and stored off cluster for historical analysis
and archival storage. These aggregators also forward selected
metrics on to the shared LANL monitoring infrastructure.

C. Collection of facilities data

The facilities infrastructure had to change in order to ac-
commodate Trinity. Heat exchangers between racks of Trinity
cool the air flowing from one end of racks to the other.
This configuration required additional cooling towers, piping,
pumps, and construction to the existing data center and facil-
ities. The new infrastructure specific to Trinity is comprised
of two cooling loops, a primary and secondary loop. Heat ex-
changers between the loops remove heat generated by Trinity.

The primary loop provides 45◦F inlet water from four
cooling towers and three pumps. This water is recirculated
taking the heat generated by Trinity from the heat exchanger
into this loop and cools it down again via the cooling towers.
The secondary loop resides on the other side of the heat
exchanger and is considered a closed loop to Trinity. It flows
to remove the heat generated by Trinity but is never replaced
with different water. This allows for a “clean” inside loop to
the cluster which reduces the need for water treatment and
prevents buildup on the cluster side.

1) TRANE-Building Automation System: The Building Au-
tomation System (BAS) both controls and monitors the facility
cooling equipment. Through TRANE, software is utilized to
provide visual representations of the cooling systems both
for the building and cooling for the supercomputers. This
also includes all the recently added cooling configuration for
Trinity, such as pumps and piping.

This system alerts facilities team member when off normal
conditions are detected. Some examples include pump failures,
thresholds for flow rates, temperature thresholds, and several
others. The system is also configured to provide automated
failover to the systems. A screen capture from the TRANE
BAS system is show in Figure 4. This system uses a web
interface to display the status of the data center. It also allows
for management of the systems that support the data centers
power and cooling infastructures. The screen capture shows
the new pumps specific to Trinity.

2) Snider Electric: The newest addition to facilities moni-
toring infrastructure is the ability to monitor power data from
the cluster. In the past tools were utilized to measure power but
were limited to minimal readings. Tools from Snider Electric
allow for more precise and frequent monitoring of power
consumption from Trinity. Trinity will use 9MW of power,
while the entire computer room floor will use up to 19.2MW,
therefore knowing its use is crucial to working with the power
company to prepare for swings in power consumption.

A screen capture showing power consumption for the
month of March is shown in Figure 5. It also shows a



Fig. 4: TRANE BAS screen capture showing the underfloor
layout for Trinity

comparison to the previous month for that given day to help
show higher or lower usage than what might be expected.
These tools are new to the data center so dashboards are still
being developed to utilize the new data not available before.

Fig. 5: Screen capture showing power utilization of Trinity

3) Environet: Environet is a data collection package which
utilizes wireless sensors[19] throughout the data center to
collect environmental temperatures. The sensors are attached to
racks to help determine cooling problems and provide a quick
visual reference through temperature maps to locate problems.
Traditionally the sensors are attached to both the front and back
of racks to show the typical hot aisle and cold aisle differences.
With Trinity’s unique cooling structure there is no longer a
hot/cold aisle configuration; however, the sensors still provide
good relative room temperatures.

While Environet is not used for alerting, it displays a
screen in the operations center that updates in real time to
show a heat map of the data center and help operations staff
recat to potential heat issues proactivly. They use both the
platform temperatures and Environet temperatures to identify
potential facility cooling concerns and address the problem
before thresholds are reached. The operators can then page
the facilities team to resolve the problem.

The data from these sensors is logged as CSV files and
allows the facilities team to look back at a history of temper-
atures to see what was normal (or not) over a period of time.
It also allows them to look back and determine when an issue
may have started as they are able to plot this information over
time easily.

Figure 6 shows a screen capture of the Environet web
interface. Access to different data centers on site are all
accessible from the same web page. The screen capture shows
Trinity specifically. As clusters are added to the data center,
manual reimplementation of the graphics must be completed
to provide a visual for the room. While under construction the
current shot does not show the heat map that would normally
be available. As this graphic is finalized it will show a heat
map for the reported sensor temperatures.

Fig. 6: Environet screen capture showing Trinity

D. Tools and analyses

1) Baler Log File Analysis: We are utilizing multiple tools
for log file analysis. While tools such as Splunk [6] and Cray’s
SEC [20] are used for discovering occurrences of log lines
matching known patterns of interest, in our operations thus far
with Trinity, we have experienced a number of scenarios where
our current known patterns are insufficient to capture the full
set of scenarios we are interested in. We have added a number
of such patterns to our SEC and Splunk rules, for instance
with respect to network congestion, thermal throttling, and
Lustre issues. We expect this to continue, particularly given
the evolving nature of the CLE and Data Warp software.

In addition, then, we are also deploying the Baler [21] log
file analysis tool. The goal of Baler is to extract a greatly
reduced number of patterns from the voluminous log data
without requiring prior knowledge of the log lines of interest.
This is achieved in the following manner: Baler takes as input
a “dictionary” of words and creates the pattern from the log
line by retaining the dictionary words and treating all other
word-like-delimited items as variables. The reduction in data
will ease the discovery of new types of events of interest.

Further, by characterizing all log lines as distinct patterns,
we can then more easily further investigate associations of
numerical resource data from SEDC and LDMS with the log
events. For example, on the ART systems, we have used the
Baler patterns in conjunction with system state data to examine
occurrences of thermal events under different power capping
scenarios [18].

Baler runs in parallel on the monitoring cluster, as is shown
in Figure 1. The LDMS data from the storage daemons can



thus be used in conjunction with the pattern data at this point.

2) Zenoss: Zenoss is an open-source event driven monitor-
ing tool capable of real-time notification [5]. Rules and filters
are written within Zenoss to utilize syslog from clusters and
alert on event. It is well designed for detection of both known
problems as well as hardware failures. Zenoss is currently the
primary tool for the 24/7 operations staff at LANL for alerting
on hardware and other node failures.

Because Zenoss is dependent on syslog feed, some tests for
Trinity are injecting lines into syslog to provide PASS/FAIL
output for over a dozen ‘sanity’ checks for the system, in-
cluding: utilization, number of nodes down, responsiveness
of Moab, and several other quick check things. Section IV-A
provides more details.

3) Splunk Log Analysis and Visualizations: Splunk is both
a log collection and log analysis tool. It captures and indexes
real-time data in searchable databases [6]. Utilizing multiple
indexers a search head can search over a variety of metrics
and over multiple sources. Splunk allows correlation of data
between clusters and systems allowing cross-platform/system
analysis. For example, one could examine I/O bandwidth by
observing cluster compute nodes, filesystem servers, and even
the network switches between them. It provides a full picture
of the entire system by providing access to correlate all the
components making up the entire system.

4) RabbitMQ: RabbitMQ is a message broker sys-
tem based on the Advanced Message Queueing Protocol
(AMQP)[22]. This producer/consumer model allows system
data to be captured in messaging queues which are uniquely
keyed, allowing multiple consumers to subscribe to a particular
queue for consumption of data. Having multiple instances of
RabbitMQ provides failover and redundancy, preventing data
loss.

For Trinity, all syslog data will be forwarded to RabbitMQ.
The feed will then be dispersed appropriately to Splunk and
other desired collectors of the feed.

E. Implementation of monitoring cluster

The Trinity monitoring cluster will be expected to scale to
collect a large amount of data, both during the initial Phase
One deployment, as well as during the Phase Two deployment
when the system will roughly double in size. In addition, we
cannot know at this time what new types or feeds of data we
will find useful for monitoring throughout the lifetime of the
system, and there is a strong possibility that our requirements
for collecting and processing monitoring data will change
drastically over the next few years. We also expect to add
additional real-time consumers of our monitoring data, other
than the existing Zenoss and Splunk consumers, and will need
to be able to easily deploy and manage servers for those
consumers.

Based on these needs, we decided to deploy as much
of our monitoring infrastructure as possible using the same
cluster deployment tools we use to manage our commod-
ity HPC platforms. In particular, our stack uses a heavily-
customized version of Perceus [23] as a provisioning tool,
with tight integration into our Cfengine [24] configuration
management system. All Perceus images are generated directly

Fig. 7: The CM server provides the Cfengine configuration
information and scripts to the cluster master, which builds boot
images and boots the nodes using Perceus

from our source OS package repositories and files managed by
Cfengine. This stack provides a flexible way for us to provision
OS images across the monitoring cluster, supporting images of
multiple types and potentially scaling as high as hundreds of
nodes. It also gives us a familiar stack which is very well-
understood at LANL, minimizing the additional complexity
we might have to add to the system.

As currently deployed, the monitoring cluster includes the
following components:

• The CM server, which acts as the “source of truth”
for the Cfengine configuration, which is synced peri-
odically to the cluster master

• The cluster master, which provisions OS images to the
other nodes and provides basic services such as DNS
and NTP

• The collector nodes, which accept data feeds from
Trinity and its external services, and perform some
processing of the data

• The RabbitMQ nodes, which provide a message bus
for distributing monitoring data to several types of
consumer

• The “mon box”, which runs Zenoss and acts as the
primary monitoring point for our operations staff

• The Splunk indexers, which provide a searchable
interface to monitoring data for HPC staff

Each set of nodes (except the master) can be easily
scaled through deploying additional hardware running the
same Perceus image. Additional components, such as new data
consumers, can be deployed using the same infrastructure by
building a new Perceus image with the necessary software
included.

F. LANL HPC shared monitoring infrastructure

The existing monitoring infrastructure at LANL utilizes
both Splunk and Zenoss, with integration of RabbitMQ to



reduce the number of feeds each cluster must send out. The
current design is based on a per cluster basis outlined in
Figure 8. Each cluster has its own designated monitoring box,
referred to as a “mon-box”. The mon-box runs an instance
of Zenoss and an instance of Splunk. The cluster sends a
direct syslog feed to the Zenoss collector on the mon-box and
another directly to a designated logger box, which collects
all raw syslog data from additional clusters on the network.
A final third stream from the cluster sends to a RabbitMQ
which feeds the Splunk indexer on the clusters associated mon-
box. The following subsections detail the current use of these
components.

Fig. 8: Current Monitoring Infrastructure

1) Zenoss: Zenoss is currently the primary tool for the 24/7
operations staff at LANL for altering on hardware and node
failures. Since the data from Zenoss is live, operators can see
failed nodes, over temped CPUs and network issues as soon as
the occur. Figure 9 shows parts of the Zenoss “GRID”, where
operators can get a first glance at cluster health.

The “GRID” uses a color scheme to show the state of a
cluster as well as a percentage for cluster utilization. In Figure
9 it is observed that the cluster Mustang is at 99.5% utilization
and has nodes in the “warning” state. Additional investigation
into the cluster provides more detail to the “warning” as
being a CPU temperature reported above the defined thermal
threshold. This warning results from filtering within Zenoss
that pulled the CPU temperature from the clusters syslog. It
has the ability to record multiple occurrences of this event and
provide a count for the number of occurrences of the event
as well as both the time and date of the first occurrence, and
most recent occurrence of the event [5]. This helps provided
correlation between events to help track down the root cause.

This sort of event driven alerting allows operators to react
immediately and determine root cause and prevent total cluster
failure due to something such as facility problems without
direct facility data input.

2) Splunk: Each “mon-box” instance of Splunk acts as a
Splunk indexer. A main Splunk search head provides access to

Fig. 9: Zenoss GRID flow

each of these indexers as a collective search over all indexers.
The particular search can be limited to a specific cluster, or
expansive to compare data between clusters.

Splunk allows for more of a continuous monitoring mech-
anism with visual support through dashboards [6]. Several
dashboards have been developed between the different teams
(filesystems, storage, architecture) to monitor changes over
time. This data can often show changes in performance for a
cluster after a change has been made (for the better or worse)
as well as show differences from the norm.

While Splunk has real-time data and can provide alerts
based on searches it is primarily used for correlating data and
creating reports and visualizations to better understand a failure
or change.

Figure 10 shows part of a dashboard for tracking the state
of Moab and Torque on Trinity. This dashboard provides an
at-a-glance view of the state of the system from the perspective
of job scheduling and resource management. The current count
of compute nodes in each Torque state are shown, as well as
area plots of node and job state from the view of both Torque
and Moab.

3) RabbitMQ: RabbitMQ is currently being utilized to
aggregate cluster data and send it to each clusters respective
“mon-box” Splunk indexer. It allows multiple feeds to co-
locate and be pushed to appropriate consumers.

RabbitMQ clustering [25] is being tested to reduce the
needed feeds from each cluster as well as provide a more
centralized location for data collection and redirection. The
growth of clusters and their abilities to provide more measur-
able values, including new metrics from Trinity, are pushing
for a redesign of the monitoring infrastructure, besides just the
“mon-box”.

Trinity will be one of the first clusters to utilize the
RabbitMQ configuration in the sense that single syslog feed
will go to RabbitMQ rather than to RabbitMQ, logger, and
Zenoss. Then the message broker can provide the appropriate
feeds to the consumers wanting that feed (Splunk, Zenoss,
other). This reduces efforts from sending multiple feeds to
multiple locations and facilitates the addition and removal of
consumers as needed without affecting other traffic.

III. OVERHEAD OF IN-BAND MONITORING

In order to assess the overhead of the in-band monitoring,
Trinity testers ran the following codes at large scale, with and
without monitoring:



Fig. 10: Splunk Trinity job scheduling dashboard

High Performance Conjugate Gradient: HPCG HPCG [26]
consists of operations such as sparse matrix-vector products.
It is expected to stress the memory subsystem and network
communications. Three 10 minute runs of 9293 nodes, with
18568 processes with 16 threads each were run, both in
baseline and with 1 second monitoring conditions. The metrics
of comparison were the Benchmark Total Time and the All
Reduce times. Results are shown in Table I. No significant
variation was found. Benchmark average times with monitor-
ing are actually 0.7% lower than the baseline average and the
All Reduce times are comparable.

Condition Run Benchmark Time (sec) All Reduce (AR) Min AR Max AR Avg
Baseline 1 603.81 19.63 79.12 74.65
Baseline 2 595.58 19.55 78.73 73.87
Baseline 3 603.59 20.64 75.25 70.85

w/Monitoring 1 598.55 22.17 78.01 72.86
w/Monitoring 2 594.84 19.35 77.24 72.84
w/Monitoring 3 596.51 20.16 75.84 71.07

TABLE I: HPCG impact test results. No significant variation.

PARTISN PARTISN [27] (PARallel, TIme-dependent SN)
is a deterministic neutral particle transport code and is impor-
tant code in the LANL workload. Seven runs of a PARTISN
problem on 8192 nodes with 32 ranks per node were run: 3
runs were with monitoring at 1 sec and 4 runs were under
baseline conditions. Each run had 5 cycles. The metric used
for comparison was cycle times. Results are shown in Table II.
No significant impact was found. The percent difference in the
average run time per cycle between the baseline and LDMS
was 0.08% or less.

Sierra Low Mach Module: Nalu Nalu [28] is an adaptive-
mesh, variable-density, acoustically incompressible, unstruc-
tured fluid dynamics code that supports energy applications
of interest. Nalu is built atop Sandia National Laboratories’
Sierra Toolkit and Trilinos solver’s Tpetra/Epetra stack. For
this test, under both baseline and monitoring conditions, we ran
3 concurrent instances of a 65k-core, time-accurate simulation
initialized from checkpoint/restart files; this simulation was
also performed as part of an Open Science campaign on

Condition Cycle Average Time (sec) Min Time Max Time

Baseline 1 50.53 50.41 50.66
Baseline 2 38.44 38.37 38.48
Baseline 3 38.26 38.22 38.32
Baseline 4 37.28 37.22 37.34
Baseline 5 37.33 37.30 37.36

w/Monitoring 1 50.42 50.29 50.49
w/Monitoring 2 38.47 38.45 38.49
w/Monitoring 3 38.29 38.26 38.31
w/Monitoring 4 37.28 37.26 37.32
w/Monitoring 5 37.36 37.34 37.38

TABLE II: PARTISN impact test results. No significant vari-
ation.

Trinity. Due to time limitations, however, we ran a limited
set of timesteps. The metric used was the code-reported wall
time. These metrics are provided in Table III and exhibit no
significant variation. The average run time with monitoring
had a 0.3% increase, however all monitoring run times were
within the variability exhibited from the baseline cases, i.e.,
the minimum and maximum baseline run times.

Condition Run Walltime (min)

Baseline 1 8.34
Baseline 2 8.26
Baseline 3 8.40

w/Monitoring 1 8.37
w/Monitoring 2 8.33
w/Monitoring 3 8.35

TABLE III: Nalu impact test results. No significant variation.

PSNAP PSNAP [29] is used to measure OS jitter. 3 runs
were performed under baseline and monitoring conditions. We
ran 100000 loops of 1000 microsecs with and without a barrier
every 100 loops. The runs were performed on 9216 cores,
32 cores per node. The metric of comparison is the change
in slowdown, where slowdown is the actual loop times as
compared to the ideal loop time. Results are shown in Table IV.
With 1 sec monitoring, the slowdown increased by < 0.02%
above the baseline slowdown, which we deemed acceptable.



Condition Run Per node avg slowdown min slowdown max slowdown

Baseline no barrier 1 0.217 +/- 0.012 0.200 0.243
Baseline no barrier 2 0.217 +/- 0.011 0.199 0.245
Baseline no barrier 3 0.217 +/- 0.011 0.199 0.247

w/Monitoring no barrier 1 0.237 +/- 0.009 0.209 0.253
w/Monitoring no barrier 2 0.237 +/- 0.009 0.205 0.254
w/Monitoring no barrier 3 0.238 +/- 0.009 0.209 0.253

Baseline w/barrier 1 0.226 +/- 0.012 0.204 0.249
Baseline w/barrier 2 0.226 +/- 0.012 0.202 0.251
Baseline w/barrier 3 0.223 +/- 0.011 0.204 0.248

w/Monitoring w/barrier 1 0.238 +/- 0.011 0.207 0.259
w/Monitoring w/barrier 2 0.238 +/- 0.011 0.212 0.259
w/Monitoring w/barrier 3 0.231 +/- 0.011 0.209 0.271

TABLE IV: PSNAP impact test results. With 1 sec monitoring,
the slowdown increased by < 0.02% above the baseline
slowdown, which we deemed acceptable.

IV. DEVELOPMENT OF MONITORING IN PRODUCTION

The Trinity deployment is still in its early stages, with
Phase One of the machine completing its initial “Open Sci-
ence” campaign of user jobs as this paper was being com-
pleted. While the overall design and implementation of the
monitoring cluster and its supporting infrastructure is rea-
sonably well-determined, our day-to-day tools and processes
for keeping track of the system’s state are still in active
development. In this section, we will present the evolving
state of tools and practices used by our production teams in
monitoring the system.

A. Health checks for service components

PASS: kernel version matches expected value
PASS: hostname matches expected value
PASS: autofs active and enabled
PASS: rsyslog active and enabled
PASS: sshd active and enabled
PASS: df -h works on /lustre/scratch5
PASS: lfs df returns within five seconds
PASS: local filesystems are mounted
PASS: lustre mounted
PASS: ls -l works on /users/testuser
PASS: ls -l works on /usr/projects/testproject
PASS: pbsnodes returns
FAIL: pbsnodes has 9337 nodes in trinity
FAIL: mdiag shows tr-drm as the moab server
FAIL: showq –blocking returns
FAIL: showq returns
FAIL: showres returns
FAIL: showstate returns
12 TESTS SUCCEEDED and 6 TESTS FAILED

Fig. 11: Example output from a “health check” run on a Trinity
front-end (eLogin) node.

While all of the HPC platforms at LANL employ health
checks to verify compute node functionality at the beginning
or end of each job, we make little use of active checks on
internal or external service nodes which provide supporting
infrastructure for compute jobs. On our existing platforms,
this has not represented a major gap in monitoring, as these
systems are considered well-understood and most issues can

be easily caught by filters on logs generated by the relevant
software services. However, in our limited time running Trinity
in production, we have already encountered several issues
with new functionality which are not easy to catch through
simple log filters, including issues relating to the new Ansible
configuration management system and the Cray DataWarp
burst buffers.

For this reason, we are working to deploy a comprehensive
set of health checks to report on the status of various hardware
and software services. Our health checks are intended to com-
plement the Cray Node Health Check (NHC)[30] scripts which
run on the compute nodes, and are designed to run from cron
on any node where user-facing performance considerations do
not preclude a periodic check. Our most frequently-run tier
of checks, which will run every ten minutes, are designed
to execute as quickly as possible while still checking for the
most common or most problematic issues we have seen in
production. Checks in this level include using systemctl to
check the status of required services; verifying that user-facing
commands which are expected to complete quickly will do
so (e.g., Moab’s showq); and verifying that filesystem mounts
are present. On some nodes, such as our user-facing front-
end nodes, we also plan to deploy a set of heavier weight
checks which would run less frequently, i.e. on an hourly or
even daily basis. Checks in this level may include verifying
that job submission works as expected or verifying that simple
software builds complete successfully.

In our initial implementation, each health check script takes
the form of a Python program which defines a set of tests, and
uses the unittest module as a framework for test execution.
The status of each test is logged individually in syslog as
a “pass”, “warn”, or “fail” so that these tests can be parsed
by monitoring tools such as Zenoss or Splunk and used to
generate alerts or populate a dashboard. An example of logged
test statuses for a front-end node is shown in Figure 11.

B. Dashboards and visualization

We are developing several different tiers of visualization
to assist us in monitoring the system in production. These
visualizations will be used by several different HPC teams
at LANL, including our operations staff, Platforms system
administration, networking, and filesystems teams, as well as
our Cray site personnel.

Our primary operational visualization for Trinity, as for our
other systems, will be a Zenoss “GRID” similar to Figure 9.
This dashboard will provide a quick “at-a-glance” view of
the state of the system, helping to identify operational issues.
Problems that would cause dashboard indicators to turn red
include critical infrastructure hardware going offline (such as
the SMW), failure of compute nodes or redundant services
over a certain threshold, or the failure of some of the health
checks from Section IV-A.

In addition to the Zenoss GRID, we plan to construct
several more specialized dashboards using Splunk to visualize
specific types of data. While Splunk dashboards update more
slowly than the GRID, as they must re-run searches of the
monitoring data to update each panel, they provide richer
visualization options and can be more easily altered on the
fly to suit the needs of day-to-day monitoring. Specific teams



will construct dashboards most relevant to their own specific
tasks, such as dashboards specific to monitoring networking,
filesystem state, or the state of the resource manager and job
scheduler. An example dashboard for viewing node and job
status with respect to job scheduling is shown in Figure 10.

C. Data Driven Operations

Our monitoring design seeks to enable easier run-time
integration of data sources in order to improve operational
decisions. We are working on supporting both numerical and
text data sources in our tools to enable correlations of events
with numerical state data. Of particular interest is determining
relationships of Aries traffic related data and Lustre data with
performance issues and failure data in the logs.

We are working on architectural design to enable user
visualization of the in-band data. This will allow users to
have greater insight into their application resource demands in
order to detect imbalance and sub-optimal use of resources. We
have seen that system monitoring data at the time resolutions
we are are targeting here can give insight into application
resource utilization under production conditions [31]. This is
as opposed to typical performance analysis tools which provide
higher fidelity information, but with potential limits of scale
and without insight into the entire system state.

Ultimately, we seek to use increased understanding of
the system workload and system characteristics to improve
resource utilization within Trinity and within the data center as
a whole. Our initial work in monitoring the ART systems [18],
[32] has shown thermal distributions within the system and
possible performance distributions among components that
perhaps should be taken into consideration in application
placement, such as placing the most computationally intensive
jobs on processors at the coolest locations or that are the
more highly performing. Greater understanding of network
congestion in combination with understanding of applications’
communication patterns can potentially be used to enable
better application placement via the scheduler. Finally, the data
center as whole is subject to power and cooling constraints
that affect all platforms housed within. We seek to gain
greater understanding of the platform’s power demands under
significant applications and workloads so that we can more
optimally schedule load and power cap to respond to these
constraints.

V. CONCLUSIONS

In this paper, we have described our motivation in de-
signing and deploying a next-generation monitoring system
for Trinity, both due to its scale and the added complexity
of this system relative to previous HPC platforms deployed
at LANL. We present the architecture and implementation of
a monitoring cluster which collects and aggregates several
different types of data feed, and distributes it for further
processing and analysis to a larger monitoring infrastructure
shared with the other HPC platforms and infrastructure at
LANL. We also present an early analysis of the overhead and
application impact imposed by our monitoring.

VI. FUTURE WORK

While we have accomplished our initial deployment of
a next-generation monitoring system for Trinity, there are
several areas in which our system still needs improvement for
functionality and resilience.

First, while we have architected for redundancy in several
components of our monitoring infrastructure, the SMW still
stands out as a single point of failure for the system. The
vast majority of logging data, as well as SEDC metrics, are
collected only at the SMW and must be forwarded from there
to our monitoring cluster. The SMW has limited network
connectivity, with most network ports already dedicated to
specific functionality required to run the system, which has
constrained us to forwarding monitoring data using the gigabit
Ethernet link used for the site network. Any new logging
or monitoring which uses syslog adds additional load to the
SMW, which already performs a large number of functions
for the HPC platform, and constrains the available network
bandwidth. To mitigate this, we are working with Cray to
explore the idea of adding an additional log host to the system
which could take over SEDC data collection, collection of
system log data, or both.

Second, while syslog is a convenient transport for collect-
ing most forms of data, it does not provide any good built-in
mechanisms for high availability. The naive way to provide
“HA” for syslog is simply to forward the same data stream
to more than one log server; but the constraints on network
bandwidth at the SMW make us hesitant to double or triple
the load of log forwarding by pointing it at more than one
member of the monitoring cluster. We are currently exploring
tools such as pacemaker in order to provide HA on a network
level, by forwarding logs from the SMW to a single IP which
can be failed over between multiple members of the monitoring
cluster.

Finally, while we have built an infrastructure for collect-
ing and distributing log data through the shared RabbitMQ
infrastructure, we have yet to deploy tools for processing or
analyzing this data stream apart from our legacy Zenoss and
Splunk infrastructure. We still need to take advantage of this
message bus architecture to add additional analysis tools, both
for our own systems-level analysis, and for making selected
data available to our users in a secure fashion. This will
hopefully include an automated way to make LDMS data
available on a per-job basis to the owners of those jobs.
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